Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

$\left\{\left[\mathrm{Ca}_{5}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)_{9}\right] \cdot 8 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$: the first crystallographically characterized non-transition metal salt of isophthalic acid

Sophie H. Dale and Mark R. J. Elsegood*

Chemistry Department, Loughborough University, Loughborough, Leicestershire LE11 3TU, England
Correspondence e-mail: m.r.j.elsegood@lboro.ac.uk

Received 8 September 2003
Accepted 17 October 2003
Online 30 November 2003
The reaction of CaCO_{3} with isophthalic acid in water yields nonaaquapenta- μ-isophthalato-pentacalcium octahydrate, $\left\{\left[\mathrm{Ca}_{5}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)_{9}\right] \cdot 8 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, a complex polymeric onedimensional column structure bearing metal-carboxylate bonds and Ca-bound terminal and bridging water molecules, in addition to hydrogen-bonded water molecules of crystallization. The asymmetric unit comprises half of the formula unit, with one Ca^{2+} ion located on a twofold axis, and contains 16 unique strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, some of which link the columns together.

Comment

The benzenepolycarboxylic acid family has been extensively exploited in the challenge of creating functional porous
supramolecular architectures (Yaghi et al., 1998; Janiak, 1997). While numerous examples of polymeric metal-organic frameworks (MOFs) exist in the literature, containing the more commonly used terephthalic (e.g. Groeneman et al., 1999) and trimesic (e.g. Yaghi et al., 1995) acids, a search of the Cambridge Structural Database (Version 5.24, July 2003 update; Allen, 2002) has highlighted the use of isophthalic acid (H_{2} IPA, benzene-1,3-dicarboxylic acid), predominantly in mixed-ligand metal complexes, for example, in combination with derivatives of 4,4'-bipyridine (Bourne et al., 2001; Tao et al., 2000, 2002). Only two examples exist of solely hydrated salts of H_{2} IPA, namely those of Zn^{2+} (Otto \& Wheeler, 2001) and La^{3+} (Kim et al., 2001), and this led us to investigate the synthesis of other hydrated metal salts of H_{2} IPA, including the title Ca^{2+} salt, (I), presented here.

(I)

The asymmetric unit of (I), $\left\{\left[\mathrm{Ca}_{5}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)_{9}\right]\right.$-$\left.8 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, contains half a formula unit, with $2.5 \mathrm{Ca}^{2+}$ cations, 2.5 IPA $^{2-}$ anionic ligands and 8.5 water molecules. Two Ca^{2+} ions (Ca 1 and Ca 2) in general positions both have a coordination number of eight, with the coordination sphere of atom Ca 1 comprising six metal-carboxylate bonds and two terminal metal- OH_{2} bonds, while atom Ca 2 has six metal-carboxylate bonds, one terminal metal- OH_{2} bond and one bridging metal-

Figure 1
A view of (I), showing the atom-labelling scheme and the completed Ca^{2+} coordination spheres. Displacement ellipsoids are drawn at the 50% probability level and all H atoms have been omitted for clarity. Atoms with the suffix A are at the symmetry position $\left(-x, y, \frac{1}{2}-z\right), B$ at $\left(1-x, y, \frac{1}{2}-z\right)$ and C at $(x+1, y, z)$.

Figure 2
A packing plot of (I), showing the one-dimensional coordination polymer columns extending parallel to the crystallographic a axis. H atoms have been omitted for clarity and hydrogen-bond $\mathrm{O} \cdots \mathrm{O}$ contacts are indicated by dashed lines.
OH_{2} bond, with the water molecule (atom O15) bridging atoms Ca 2 and Ca 3 , which lies on a twofold axis. In contrast, atom Ca 3 has a coordination number of nine and forms six metal-carboxylate bonds, in addition to one terminal and two bridging metal- OH_{2} bonds (Fig. 1 and Table 1). The $\mathrm{Ca}-\mathrm{O}$ bond lengths are in the range 2.3252 (12)-2.7746 (13) \AA for metal-carboxylate bonds and 2.3568 (13) -2.5800 (16) \AA for metal- OH_{2} bonds, which compare well with bond lengths observed in the literature, for example, in calcium terephthalate trihydrate (Dale \& Elsegood, 2003).

The carboxylate groups of the IPA^{2-} anions and their respective benzene rings lie close to coplanarity, with the greatest twist angle being $10.0(3)^{\circ}$, while the aromatic rings of the anions lie at angles of roughly 60° to each other [dihedral angles with respect to the $\mathrm{C} 1-\mathrm{C} 6$ ring: carboxyl groups $\mathrm{C} 7 / \mathrm{O} 1 /$ $\mathrm{O} 2=6.5(2)^{\circ}$ and $\mathrm{C} 8 / \mathrm{O} 3 / \mathrm{O} 4=4.8(2)^{\circ}$, and rings $\mathrm{C} 9-\mathrm{C} 14=$ $63.45(6)^{\circ}$ and $\mathrm{C} 17-\mathrm{C} 20=62.84(6)^{\circ}$; dihedral angles with respect to the C9-C14 ring: carboxyl groups C15/O5/O6 = $6.3(2)^{\circ}$ and $\mathrm{C} 16 / \mathrm{O} 7 / \mathrm{O} 8=1.0(2)^{\circ}$, and ring $\mathrm{C} 17-\mathrm{C} 20=$ $62.15(5)^{\circ}$; dihedral angle with respect to the C17-C20 ring: carboxyl group C21/O9/O10 = $\left.10.0(3)^{\circ}\right]$.

Each unique carboxylate group in (I) chelates one Ca^{2+} centre, with one of its O atoms also bridging a second Ca^{2+} centre, producing a $\eta^{2}: \eta^{1}: \mu_{2}$ motif. This creates an infinite onedimensional coordination polymer which, viewed end on, approximates to a five-pointed star in cross-section. An extensive array of 16 unique strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) between metal-coordinated water molecules, water molecules of crystallization and carboxyl O atoms produces an extensive hydrogen-bonding network, too
complex to describe here in detail. Packing plots reveal that each column (propagating parallel to the crystallographic a axis) is connected, either via direct or water-bridged hydrogen-bond paths, to five neighbouring columns (Fig. 2).

Experimental

Isophthalic acid (1 equivalent) was refluxed with CaCO_{3} (1 equivalent) in $\mathrm{H}_{2} \mathrm{O}$ for 24 h , producing X-ray quality colourless crystals of (I) in quantitative yield upon slow evaporation of the cooled filtered solution. The crystals were observed to desolvate at $318-323 \mathrm{~K}$. Spectroscopic analysis, IR ($\mathrm{KBr}, v_{\max }, \mathrm{cm}^{-1}$): $3442(b r, \mathrm{OH}), 3136$ and 3118 (aromatic $\mathrm{C}-\mathrm{H}$), 1603 and 1533 (asymmetric CO_{2}^{-}), 1479, 1448, 1394 (symmetric $\mathrm{CO}_{2}{ }^{-}$), 1280, 1163, 1107, 1080 (C-O), 942, 916, 840, 833, 745, 725 (aromatic C-H). Analysis calculated for $\mathrm{C}_{40} \mathrm{H}_{54} \mathrm{Ca}_{5} \mathrm{O}_{37}$: C 36.20 , H 4.10%; found: C 36.39 , H 3.63%.

Crystal data

$\left[\mathrm{Ca}_{5}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)_{9}\right] \cdot 8 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=1327.24$
Monoclinic, $C 2 / c$
$a=15.6289$ (8) A
$b=21.2640$ (11) \AA
$c=17.1852$ (9) \AA
$\beta=112.134(2)^{\circ}$
$V=5290.3(5) \AA^{3}$
$Z=4$
$D_{x}=1.666 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 9880 reflections
$\theta=2.4-28.9^{\circ}$
$\mu=0.62 \mathrm{~mm}^{-1}$
$T=150$ (2) K
Block, colourless
$0.38 \times 0.20 \times 0.10 \mathrm{~mm}$

Data collection

Bruker SMART 1000 CCD area-
5100 reflections with $I>2 \sigma(I)$
detector diffractometer
ω rotation scans with narrow frames
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
$T_{\text {min }}=0.836, T_{\text {max }}=0.941$
23336 measured reflections
6434 independent reflections

Refinement

Refinement on F^{2}
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0373 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$+4.8388 P$]
$w R\left(F^{2}\right)=0.083$
$S=1.08$
6434 reflections
428 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected interatomic distances (\AA).

$\mathrm{Ca} 1-\mathrm{O} 11$	$2.3568(13)$	$\mathrm{Ca} 2-\mathrm{O} 15$	$2.4457(16)$
$\mathrm{Ca} 1-\mathrm{O} 2^{\mathrm{i}}$	$2.3652(12)$	$\mathrm{Ca} 2-\mathrm{O} 6$	$2.4555(12)$
$\mathrm{Ca} 1-\mathrm{O} 9$	$2.3772(12)$	$\mathrm{Ca} 2-\mathrm{O} 10$	$2.4575(13)$
$\mathrm{Ca} 1-\mathrm{O} 12$	$2.4078(13)$	$\mathrm{Ca} 2-\mathrm{O} 5$	$2.5473(13)$
$\mathrm{Ca} 1-\mathrm{O} 1$	$2.5238(12)$	$\mathrm{Ca} 2-\mathrm{O} 9$	$2.5682(12)$
$\mathrm{Ca} 1-\mathrm{O} 8^{\mathrm{ii}}$	$2.5377(12)$	$\mathrm{Ca} 3-\mathrm{O} 14$	$2.376(3)$
$\mathrm{Ca} 1-\mathrm{O} 7^{\mathrm{ii}}$	$2.5600(12)$	$\mathrm{Ca} 3-\mathrm{O} 6$	$2.4138(13)$
$\mathrm{Ca} 1-\mathrm{O} 2$	$2.6610(12)$	$\mathrm{Ca} 3-\mathrm{O} 3^{\mathrm{i}}$	$2.5733(12)$
$\mathrm{Ca} 2-\mathrm{O} 3^{\mathrm{i}}$	$2.3252(12)$	$\mathrm{Ca} 3-\mathrm{O} 15$	$2.5800(16)$
$\mathrm{Ca} 2-\mathrm{O} 13$	$2.3824(13)$	$\mathrm{Ca} 3-\mathrm{O} 4^{\mathrm{i}}$	$2.7746(13)$
$\mathrm{Ca} 2-\mathrm{O} 7^{\mathrm{ii}}$	$2.4089(12)$		
Symmetry codes: $(\mathrm{i})-x, y, \frac{1}{2}-z ;(\mathrm{ii}) 1-x, y, \frac{1}{2}-z$.			

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 11-\mathrm{H} 11 A \cdots \mathrm{O} 16^{\mathrm{i}}$	0.82 (2)	1.96 (2)	2.7670 (18)	169 (2)
O11-H11B \cdots O19 ${ }^{\text {ii }}$	0.82 (2)	1.96 (2)	2.7656 (19)	167 (2)
$\mathrm{O} 12-\mathrm{H} 12 A \cdots \mathrm{O} 1^{\text {iii }}$	0.82 (2)	2.05 (2)	2.8535 (18)	169 (2)
O12-H12B \cdots O5	0.82 (2)	2.20 (2)	2.9836 (18)	162 (2)
$\mathrm{O} 13-\mathrm{H} 13 A \cdots \mathrm{O} 19^{\text {iv }}$	0.82 (2)	1.90 (2)	2.7110 (19)	172 (2)
$\mathrm{O} 13-\mathrm{H} 13 B \cdots \mathrm{O}^{\text {1 }}{ }^{\text {v }}$	0.82 (2)	1.99 (2)	2.786 (2)	164 (2)
O14-H14B $\cdots \mathrm{O} 18^{\text {vi }}$	0.82 (2)	1.81 (2)	2.606 (3)	164 (3)
O15-H15B \cdots O17 ${ }^{\text {vii }}$	0.82 (2)	2.06 (2)	2.818 (3)	155 (2)
O16-H16A $\cdots \mathrm{O}^{\text {v }}$	0.82 (2)	1.98 (2)	2.7185 (18)	150 (2)
O16-H16B \cdots O8	0.82 (2)	1.91 (2)	2.7278 (18)	174 (2)
O17-H17A . ${ }^{\text {O } 4}$	0.82 (2)	2.00 (2)	2.808 (2)	167 (3)
O17-H17B \cdots O10 ${ }^{\text {iv }}$	0.82 (2)	2.02 (2)	2.839 (2)	177 (3)
O18-H18A \cdots O8	0.82 (2)	2.07 (2)	2.876 (2)	168 (3)
$\mathrm{O} 18-\mathrm{H} 18 B \cdots \mathrm{O} 10^{\text {ii }}$	0.82 (2)	2.16 (2)	2.890 (2)	158 (3)
$\mathrm{O} 19-\mathrm{H} 19 A \cdots \mathrm{O} 4$	0.82 (2)	2.00 (2)	2.7747 (18)	159 (2)
$\mathrm{O} 19-\mathrm{H} 19 \mathrm{~B} \cdots \mathrm{O} 1^{\text {iv }}$	0.82 (2)	2.00 (2)	2.7639 (18)	156 (2)

Symmetry codes: (i) $x-1, y, z$; (ii) $\frac{1}{2}+x, \frac{1}{2}+y, z$; (iii) $-x, 1-y,-z$; (iv) $-\frac{1}{2}-x, \frac{1}{2}-y,-z$; (v) $1-x, 1-y,-z$; (vi) $\frac{3}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$; (vii) $1+x, y, z$.

In the refinement of the water molecules, 1,2- and 1,3-distances were refined with the SHELXTL commands SADI 0.005 and DFIX 1.330 .005 , respectively. Aromatic H atoms were placed in geometric positions ($\mathrm{C}-\mathrm{H}=0.95 \AA$) using a riding model, while the coordinates of the water H atoms were refined using geometric restraints on the $\mathrm{O}-\mathrm{H}$ bond lengths and $\mathrm{H}-\mathrm{O}-\mathrm{H}$ bond angles. $U_{\text {iso }}(\mathrm{H})$ values were set at $1.2 U_{\text {eq }}$ for aryl $\mathrm{H}\left(1.5 U_{\text {eq }}\right.$ for water H$)$. Atom O14 is disordered over two equally occupied sets of positions close to a twofold axis and restraints were applied to the anisotropic displacement parameters of this atom.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve
structure: SHELXTL (Sheldrick, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

We acknowledge the EPSRC for the provision of a studentship (SHD).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TR1070). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bourne, S. A., Lu, J., Moulton, B. \& Zaworotko, M. J. (2001). Chem. Commun. pp. 861-862.
Bruker (2001). SMART (Version 5.611) and SAINT (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.
Dale, S. H. \& Elsegood, M. R. J. (2003). Acta Cryst. E59, m586-m587.
Groeneman, R. H., MacGillivray, L. R. \& Atwood, J. L. (1999). Inorg. Chem. 38, 208-209.
Janiak, C. (1997). Angew. Chem. Int. Ed. Engl. 36, 1431-1434.
Kim, H. J., Min, D., Hoe, H. S. \& Lee, S. W. (2001). J. Korean Chem. Soc. 45, 507-512.
Otto, T. J. \& Wheeler, K. A. (2001). Acta Cryst. C57, 704-705.
Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2001). SADABS. Version 2.03. University of Göttingen, Germany.
Tao, J., Tong, M. L., Shi, J. X., Chen, X. M. \& Ng, S. W. (2000). Chem. Commun. pp. 2043-2044.
Tao, J., Yin, X., Huang, R. B. \& Zheng, L. S. (2002). Inorg. Chem. Commun. 5, 1000-1002.
Yaghi, O. M., Li, G. M. \& Li, H. L. (1995). Nature (London), 378, 703-706.
Yaghi, O. M., Li, H., Davis, C., Richardson, D. \& Groy, T. L. (1998). Acc. Chem. Res. 31, 474-484.

