metal-organic compounds

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

${[Ca_5(C_8H_4O_4)_5(H_2O)_9]\cdot 8H_2O}_n$: the first crystallographically characterized non-transition metal salt of isophthalic acid

Sophie H. Dale and Mark R. J. Elsegood*

Chemistry Department, Loughborough University, Loughborough, Leicestershire LE11 3TU, England Correspondence e-mail: m.r.j.elsegood@lboro.ac.uk

Received 8 September 2003 Accepted 17 October 2003 Online 30 November 2003

The reaction of CaCO₃ with isophthalic acid in water yields nonaaquapenta- μ -isophthalato-pentacalcium octahydrate, $\{[Ca_5(C_8H_4O_4)_5(H_2O)_9]\cdot 8H_2O\}_n$, a complex polymeric onedimensional column structure bearing metal–carboxylate bonds and Ca-bound terminal and bridging water molecules, in addition to hydrogen-bonded water molecules of crystallization. The asymmetric unit comprises half of the formula unit, with one Ca²⁺ ion located on a twofold axis, and contains 16 unique strong O–H···O hydrogen bonds, some of which link the columns together.

Comment

The benzenepolycarboxylic acid family has been extensively exploited in the challenge of creating functional porous supramolecular architectures (Yaghi *et al.*, 1998; Janiak, 1997). While numerous examples of polymeric metal–organic frameworks (MOFs) exist in the literature, containing the more commonly used terephthalic (*e.g.* Groeneman *et al.*, 1999) and trimesic (*e.g.* Yaghi *et al.*, 1995) acids, a search of the Cambridge Structural Database (Version 5.24, July 2003 update; Allen, 2002) has highlighted the use of isophthalic acid (H₂IPA, benzene-1,3-dicarboxylic acid), predominantly in mixed-ligand metal complexes, for example, in combination with derivatives of 4,4'-bipyridine (Bourne *et al.*, 2001; Tao *et al.*, 2000, 2002). Only two examples exist of solely hydrated salts of H₂IPA, namely those of Zn²⁺ (Otto & Wheeler, 2001) and La³⁺ (Kim *et al.*, 2001), and this led us to investigate the synthesis of other hydrated metal salts of H₂IPA, including the title Ca²⁺ salt, (I), presented here.

The asymmetric unit of (I), $\{[Ca_5(C_8H_4O_4)_5(H_2O)_9]$. 8H₂O $_n$, contains half a formula unit, with 2.5 Ca²⁺ cations, 2.5 IPA²⁻ anionic ligands and 8.5 water molecules. Two Ca²⁺ ions (Ca1 and Ca2) in general positions both have a coordination number of eight, with the coordination sphere of atom Ca1 comprising six metal–carboxylate bonds and two terminal metal–OH₂ bonds, while atom Ca2 has six metal–carboxylate bonds, one terminal metal–OH₂ bond and one bridging metal–

Figure 1

A view of (I), showing the atom-labelling scheme and the completed Ca²⁺ coordination spheres. Displacement ellipsoids are drawn at the 50% probability level and all H atoms have been omitted for clarity. Atoms with the suffix A are at the symmetry position $(-x, y, \frac{1}{2} - z)$, B at $(1 - x, y, \frac{1}{2} - z)$ and C at (x + 1, y, z).

A packing plot of (I), showing the one-dimensional coordination polymer columns extending parallel to the crystallographic a axis. H atoms have been omitted for clarity and hydrogen-bond O···O contacts are indicated by dashed lines.

OH₂ bond, with the water molecule (atom O15) bridging atoms Ca2 and Ca3, which lies on a twofold axis. In contrast, atom Ca3 has a coordination number of nine and forms six metal-carboxylate bonds, in addition to one terminal and two bridging metal-OH₂ bonds (Fig. 1 and Table 1). The Ca-Obond lengths are in the range 2.3252 (12)-2.7746 (13) Å for metal-carboxylate bonds and 2.3568 (13)-2.5800 (16) Å for metal-OH₂ bonds, which compare well with bond lengths observed in the literature, for example, in calcium terephthalate trihydrate (Dale & Elsegood, 2003).

The carboxylate groups of the IPA²⁻ anions and their respective benzene rings lie close to coplanarity, with the greatest twist angle being $10.0 (3)^\circ$, while the aromatic rings of the anions lie at angles of roughly 60° to each other [dihedral angles with respect to the C1-C6 ring: carboxyl groups C7/O1/ $O2 = 6.5 (2)^{\circ}$ and $C8/O3/O4 = 4.8 (2)^{\circ}$, and rings C9-C14 = $63.45 (6)^{\circ}$ and C17-C20 = $62.84 (6)^{\circ}$; dihedral angles with respect to the C9-C14 ring: carboxyl groups C15/O5/O6 = $6.3 (2)^{\circ}$ and C16/O7/O8 = 1.0 (2)°, and ring C17-C20 = $62.15 (5)^{\circ}$; dihedral angle with respect to the C17–C20 ring: carboxyl group C21/O9/O10 = $10.0 (3)^{\circ}$].

Each unique carboxylate group in (I) chelates one Ca²⁺ centre, with one of its O atoms also bridging a second Ca²⁺ centre, producing a $\eta^2: \eta^1: \mu_2$ motif. This creates an infinite onedimensional coordination polymer which, viewed end on, approximates to a five-pointed star in cross-section. An extensive array of 16 unique strong O-H···O hydrogen bonds (Table 2) between metal-coordinated water molecules, water molecules of crystallization and carboxyl O atoms produces an extensive hydrogen-bonding network, too complex to describe here in detail. Packing plots reveal that each column (propagating parallel to the crystallographic a axis) is connected, either via direct or water-bridged hydrogen-bond paths, to five neighbouring columns (Fig. 2).

Experimental

Isophthalic acid (1 equivalent) was refluxed with CaCO₃ (1 equivalent) in H₂O for 24 h, producing X-ray quality colourless crystals of (I) in quantitative yield upon slow evaporation of the cooled filtered solution. The crystals were observed to desolvate at 318-323 K. Spectroscopic analysis, IR (KBr, v_{max} , cm⁻¹): 3442 (*br*, OH), 3136 and 3118 (aromatic C-H), 1603 and 1533 (asymmetric CO₂⁻), 1479, 1448, 1394 (symmetric CO₂⁻), 1280, 1163, 1107, 1080 (C-O), 942, 916, 840, 833, 745, 725 (aromatic C-H). Analysis calculated for C₄₀H₅₄Ca₅O₃₇: C 36.20, H 4.10%; found: C 36.39, H 3.63%.

Mo Ka radiation

reflections

 $\mu = 0.62 \text{ mm}^{-1}$

Block, colourless

 $0.38 \times 0.20 \times 0.10 \text{ mm}$

5100 reflections with $I > 2\sigma(I)$

T = 150 (2) K

 $R_{\rm int}=0.027$

 $\theta_{\rm max} = 29.0^{\circ}$

 $h = -20 \rightarrow 21$

 $k = -27 \rightarrow 28$

 $l = -23 \rightarrow 22$

 $\theta = 2.4 - 28.9^{\circ}$

Cell parameters from 9880

Crystal data

 $[Ca_5(C_8H_4O_4)_5(H_2O)_9] \cdot 8H_2O$ $M_r = 1327.24$ Monoclinic, C2/c a = 15.6289 (8) Å b = 21.2640 (11) Åc = 17.1852 (9) Å $\beta = 112.134(2)^{\circ}$ $V = 5290.3 (5) \text{ Å}^3$ Z = 4 $D_x = 1.666 \text{ Mg m}^{-3}$

Data collection

Bruker SMART 1000 CCD areadetector diffractometer ω rotation scans with narrow frames Absorption correction: multi-scan (SADABS; Sheldrick, 2001) $T_{\min} = 0.836, T_{\max} = 0.941$ 23 336 measured reflections 6434 independent reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0373P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.033$	+ 4.8388P]
$wR(F^2) = 0.083$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.08	$(\Delta/\sigma)_{\rm max} = 0.001$
6434 reflections	$\Delta \rho_{\rm max} = 0.46 \text{ e } \text{\AA}^{-3}$
428 parameters	$\Delta \rho_{\rm min} = -0.33 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of	
independent and constrained	
refinement	

Table 1

Selected interatomic distances (Å).

Ca1-O11	2.3568 (13)	Ca2-O15	2.4457 (16)
Ca1-O2 ⁱ	2.3652 (12)	Ca2-O6	2.4555 (12)
Ca1-O9	2.3772 (12)	Ca2-O10	2.4575 (13)
Ca1-O12	2.4078 (13)	Ca2-O5	2.5473 (13)
Ca1-O1	2.5238 (12)	Ca2-O9	2.5682 (12)
Ca1-O8 ⁱⁱ	2.5377 (12)	Ca3-O14	2.376 (3)
Ca1-O7 ⁱⁱ	2.5600 (12)	Ca3-O6	2.4138 (13)
Ca1-O2	2.6610 (12)	Ca3-O3 ⁱ	2.5733 (12)
Ca2-O3 ⁱ	2.3252 (12)	Ca3-O15	2.5800 (16)
Ca2-O13	2.3824 (13)	Ca3-O4 ⁱ	2.7746 (13)
Ca2-O7 ⁱⁱ	2.4089 (12)		
	. ,		

Symmetry codes: (i) $-x, y, \frac{1}{2} - z$; (ii) $1 - x, y, \frac{1}{2} - z$.

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O11-H11A\cdots O16^{i}$	0.82 (2)	1.96 (2)	2.7670 (18)	169 (2)
$O11 - H11B \cdot \cdot \cdot O19^{ii}$	0.82(2)	1.96 (2)	2.7656 (19)	167 (2)
$O12-H12A\cdots O1^{iii}$	0.82(2)	2.05 (2)	2.8535 (18)	169 (2)
O12−H12B···O5	0.82(2)	2.20 (2)	2.9836 (18)	162 (2)
$O13-H13A\cdots O19^{iv}$	0.82(2)	1.90 (2)	2.7110 (19)	172 (2)
$O13-H13B\cdots O16^{v}$	0.82(2)	1.99 (2)	2.786 (2)	164 (2)
$O14-H14B\cdots O18^{vi}$	0.82(2)	1.81 (2)	2.606 (3)	164 (3)
$O15-H15B\cdots O17^{vii}$	0.82(2)	2.06 (2)	2.818 (3)	155 (2)
$O16-H16A\cdots O5^{v}$	0.82(2)	1.98 (2)	2.7185 (18)	150 (2)
O16−H16B···O8	0.82(2)	1.91 (2)	2.7278 (18)	174 (2)
$O17-H17A\cdots O4$	0.82(2)	2.00 (2)	2.808 (2)	167 (3)
$O17 - H17B \cdot \cdot \cdot O10^{iv}$	0.82(2)	2.02 (2)	2.839 (2)	177 (3)
O18-H18AO8	0.82(2)	2.07 (2)	2.876 (2)	168 (3)
$O18-H18B\cdots O10^{ii}$	0.82(2)	2.16 (2)	2.890 (2)	158 (3)
O19−H19A…O4	0.82(2)	2.00(2)	2.7747 (18)	159 (2)
$O19-H19B\cdots O1^{iv}$	0.82 (2)	2.00 (2)	2.7639 (18)	156 (2)

Symmetry codes: (i) x - 1, y, z; (ii) $\frac{1}{2} + x, \frac{1}{2} + y, z$; (iii) -x, 1 - y, -z; (iv) $-\frac{1}{2} - x, \frac{1}{2} - y, -z$; (v) 1 - x, 1 - y, -z; (vi) $\frac{3}{2} - x, y - \frac{1}{2}, \frac{1}{2} - z$; (vii) 1 + x, y, z.

In the refinement of the water molecules, 1,2- and 1,3-distances were refined with the *SHELXTL* commands SADI 0.005 and DFIX 1.33 0.005, respectively. Aromatic H atoms were placed in geometric positions (C-H = 0.95 Å) using a riding model, while the coordinates of the water H atoms were refined using geometric restraints on the O-H bond lengths and H-O-H bond angles. U_{iso} (H) values were set at $1.2U_{eq}$ for aryl H ($1.5U_{eq}$ for water H). Atom O14 is disordered over two equally occupied sets of positions close to a twofold axis and restraints were applied to the anisotropic displacement parameters of this atom.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve

structure: *SHELXTL* (Sheldrick, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and local programs.

We acknowledge the EPSRC for the provision of a studentship (SHD).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TR1070). Services for accessing these data are described at the back of the journal.

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Bourne, S. A., Lu, J., Moulton, B. & Zaworotko, M. J. (2001). *Chem. Commun.* pp. 861–862.
- Bruker (2001). SMART (Version 5.611) and SAINT (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.
- Dale, S. H. & Elsegood, M. R. J. (2003). Acta Cryst. E59, m586-m587.
- Groeneman, R. H., MacGillivray, L. R. & Atwood, J. L. (1999). *Inorg. Chem.* 38, 208–209.
- Janiak, C. (1997). Angew. Chem. Int. Ed. Engl. 36, 1431-1434.
- Kim, H. J., Min, D., Hoe, H. S. & Lee, S. W. (2001). J. Korean Chem. Soc. 45, 507–512.
- Otto, T. J. & Wheeler, K. A. (2001). Acta Cryst. C57, 704-705.
- Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2001). SADABS. Version 2.03. University of Göttingen, Germany.
- Tao, J., Tong, M. L., Shi, J. X., Chen, X. M. & Ng, S. W. (2000). Chem. Commun. pp. 2043–2044.
- Tao, J., Yin, X., Huang, R. B. & Zheng, L. S. (2002). Inorg. Chem. Commun. 5, 1000–1002.
- Yaghi, O. M., Li, G. M. & Li, H. L. (1995). Nature (London), 378, 703-706.
- Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474–484.